
Debian ARM ports
and the new ABI

Wookey
Aleph One Ltd, Embedded Debian

wookey@aleph1.co.uk
http://www.aleph1.co.uk/

 Intro

 Debian and its ports

 Debian infrastructure and mechanisms

 EABI changes

 New armel port

 Debian - The universal OS

 Handhelds to Mainframes

 Release architectures:
 alpha, amd64, arm, hppa, i386, ia64, mips, mipsel, powerpc, s390, sparc

 Non released official architectures:
 hurd-386, m68k

 debian-installer, emdebian

 Unofficial builds adds:
 armeb, kfreebsd-amd64, kfreebsd-i386, m32r

 External projects:
 nexenta

 Some Statistics

 unstable has

 10,783 source packages
 18,317 binary (arm) packages
 2,042,254 files
 (316 source, 356 binary in contrib/non-free)

 99% of suitable packages build for arm
 96% of i386 packages

 about 1000 developers

 13GB per architecture - 21 CDs

 ARM port popularity

 Debian ARM port

 ARM-Linux started 1998

 Debian-arm started in 2000

 Netwinder
 RiscPC, Cats: 2001
 Lart, Bast: 2003
 Iyonix, Manga: 2004
 NSLU2, Thecus: 2005/6

 Many others without debian-installer support

 Architecture Release Criteria

 Available in the market without NDA
 50 users, 5 developers
 Working installer
 Upstream and debian porter support, esp toolchain
 95% of archive built
 Must keep up with 2 buildds (relaxed for arm and m68k)
 Veto by release team, security team.

 Debian Suites

 Experimental
 Unstable (sid)
 Testing (etch)
 Stable (sarge)
 Oldstable (woody)

 Process

 Everything is autobuilt, except uploaded package.

 DD builds, signs, uploads
 Buildd network processes:
 Checks dependencies
 Hands out for build
 Classified as ’built-OK’, ’maybe-successful’, ’failed’.

 Packages migrate when:
 All arches are done
 No release-critical bugs filed
 Ready for 10 days in unstable
 Dependencies satisfied

 Build failure on any release arch will block.

 Architectures - percent-built

 Maintaining arm port

 Big job. Few people. Help welcome
 QEMU helps

 Issues:
 Java
 Mono
 C++ link timouts
 Mozilla

 Haskell

 Debian infrastructure

 packages.qa.debian.org
 buildd pages and logs
 ’Why is package X not in testing’
 Bugs database
 Wiki
 Porter machines

 EABI changes

 Structure packing
 Old ABI had min structure packing size of 4 bytes
 EABI has no minimum - packing is determined by type sizes

 Argument alignment
 8-byte stack alignment at public function entry points (was 4)
 64-bit data types (e.g. long long) are 8-byte aligned (was 4)

 Enums
 EABI allows enums to have variable type size (-mabi=aapcs)
 Not used on GNU/Linux - they remain as 4-bytes. (-mabi=aapcs-linux)

 Floating point
 Mixed-endian LE format goes away
 Can mix GCC softfloat and FPU hardfloat/emulation

 New syscall convention

 More efficient on harvard architecture
 Changed in kernel 2.6.15 - mainline 2.6.16
 Kernels retain old syscall compatibility so they can run older binaries.
 Speed gain is not realised unless compatibility disabled
 glibc 2.3.6 uses old syscall interface via shims
 Shims removed in glibc 2.4 and 2.3.7 - no longer supported

 Why do we care?

 Pros
 Standardisation across toolchains, debuggers
 Most arm wierdness removed (FP formats, packing, C++ exceptions)
 Hard/soft float interworking
 Thumb interworking
 Interchangeable binaries (PalmOS, GNU/Linux, Symbian OS)
 More efficient syscall convention

 Cons
 Almost total incompatibility

 Timeline

 new ABI published Dec 2003

 Code sourcery 1st cross-tools q3 2005 v 3.4.4

 2005: Early Linux adopters (montavista, nokia) - shimmed glibc
 Kernel syscalls changed during 2.6.15 - Feb 2006
 Debian port started q1 2006
 Code sourcery gcc4.1 cross-tools Q1 2006
 Angstrom OE EABI Aug 2006

 Tools

 GCC
 work done by Code Sourcery
 eabi support in CS gcc3.4.4 (with -mabi=aapcs-linux)
 From 4.1: different arch
 Old ABI is called linux-arm-none-gnu
 EABI is called linux-arm-none-gnueabi

 Glibc
 shims in 2.3.6
 new syscalls in 2.4 and 2.3.7
 shm broken in 2.4 - fixed in 2.5
 Kernel
 support from 2.6.16
 QEMU
 support from 0.8.1

 Tools (2)

 All-new toolchain needs:
 gcc-4.1,
 glibc-2.4+glibc-ports-2.4, (or 2.3.7)
 binutils-2.16.91.0.7 (or similar) and
 linux-2.6.16.
 This can be compiled using crosstool-0.42
 May 2006, or Oct for glibc2.5

 Debian port

 Worth changing to
 Avoid obsolescence
 Fix the FP problem
 Build stuff that never worked

 Binary compatibility not an issue for free software, but still convenient.
 (e.g. commerical debuggers).

 Incompatibility with existing port a problem.

 How to make the change?...

 Rename all library packages

 Pros
 Can do apt-get dist-upgrade

 Cons
 Every single library package needs to be renamed
 Will take a long time, during which unstable will be broken for all arches (6months

for C++) - 2yrs?
 Not popular due to large hassle for other arches
 Will lose v3, may lose v4 support.

 New architecture

 Pros
 Fits with gcc approach
 Does not affect non-arm arches
 Can keep ’arm’ for v3 and maybe v4 machines
 Can be done relatively quickly as no interaction with other arches/releases

 Cons
 Current arm users don’t have easy upgrade path
 Need archive space for new arch

 ABI: field in control file

 Suggested as part of multiarch proposal

 Pros
 Reflects ABI correctly, would help other transitions too

 Cons
 No existing implementation
 No consensus on including it yet
 Questions over resolving dependencies and how it fits into archive

 New Arch was chosen

 Called armel - decided at Emdebian extamadura meet
 Nokia then used same name for Maemo

 Introduced in etch +1
 May have armeb too

 Existing arm phased out in etch+2

 Issues for port

 Instruction set choice:
 EABI problematic on v3/v4
 Thumb interworking
 GCC versions: 4.1.0 broken for v4t

 Glibc version
 2.3.6 in etch
 2.3.999 (now 2.5) in experimental

 Thumb interworking

 EABI alows thumb/arm mixing at function level granularity

 Current GCC:	
 -march=armv4: mov pc,lr
 v4 onwards, only interworking-safe from v7

 -march=armv4t: bx lr
 v4t onwards, interworking-safe
 Modified GCC:

 tst lr, #1; moveq pc, lr; bx lr
 v4 onwards, interworking on v4t onwards. extra instructions

 ldm/ldr:
 v4 onwards, interworking on v5t onwards.	

 Debian maximises device coverage, not speed

 Debian port process

 Get working toolchain

 Get working kernel

 Get working Rootfs

 Patch/build armel from debian sources

 Debootstrap Buildd

 Bootstrapping Debian is hard

 Not designed to be built from scratch

 No docs for a reason!

 Circular dependencies (libc6 gcc-4.1)
 Doc-building: groff, tetex, dvi, ps2html
 gettext wants java

 Patches needed to simplify

 29 essential packages
 124 base and required packages
 16 build-essential packages
 400-odd build dependencies

 Bootstrapping mechanisms

 Plain Crossbuilding not suitable

 Scratchbox+crocodile. Possible, but problems.

 OE angstrom - dependencies, busybox, minimal versions.

 Maemo - old glibc/gcc but works well enough

 Using QEMU and mpcore board

 3-stage build process

 1. Bodge a working rootfs to build in
 Build etch armel packages - tainted but adequate
 Quite a small set of patches needed

 2. Debootstrap armel packages
 Rebuild kosher packages

 3. Debootstrap buildd to rebuild world

 Making use of old syscall compatibility in kernels

 Current Status

 96 out of 124 needed packages built

 along with 274 build dependencies built

 Several more every day but have some tricky ones left:
 libc6, gcc-4.1, perl, python

 Repository at http://ftp.uk.debian.org/debian-armel/

 Base

 Needs:
 base-files base-passwd bash bsdutils coreutils debconf debconf-i18n debianutils diff dpkg dselect e2fslibs e2fsprogs

findutils gcc-4.1-base grep gzip hostname initscripts libacl1 libattr1 libblkid1 libc6 libcap1 libcomerr2 libdb4.3
libdevmapper1.02 libgcc1 liblocale-gettext-perl libncurses5 libpam0g libpam-modules libpam-runtime libselinux1
libsepol1 libslang2 libss2 libstdc++6 libtext-charwidth-perl libtext-iconv-perl libtext-wrapi18en-perl libuuid1 login
lsb-base makedev mawk mktemp mount ncurses-base ncurses-bin passwd perl-base procps sed sysvinit sysv-rc tar
tzdata util-linux zlib1g

 Still pending:
 bsdutils dpkg dselect gcc-4.1 libc6 libstdc++ login mount passwd perl-base

 Required

 Needs:
 adduser apt aptitude apt-utils bsdmainutils cpio cron dhcp-client ed gettext-base gnupg groff-base ifupdown info

iptables iputils-ping klogd laptop-detect libbz2-1.0 libconsole libdb4.2 libdb4.4 libgcrypt11 libgdbm3 libgnutls13
libgpg-error0 libldap2 libldap-2.3-0 liblzo1 liblzo2-2 libncursesw5 libnewt0.52 libopencdk8 libpopt0 libreadline5
libsasl2 libsigc++-1.2-5c2 libsigc++-2.0-0c2a libssl0.9.8 libtasn1-3 libtasn1-3-bin libusb-0.1-4 libwrap0 logrotate
man-db manpages module-init-tools modutils nano netbase netcat net-tools openbsd-inetd readline-common
sysklogd tasksel tasksel-data tcpd traceroute vim-common vim-tiny wget whiptail

 Still pending:
 adduser apt aptitude apt-utils gnupg libgnutls13 libgpg-error0 libldap2 libsasl2 libsigc++ manpages netbase tasksel

vim-common vim-tiny whiptail

 Build-essential

 Build-essential needs:
 binutils cpp cpp-4.1 dpkg-dev g++ g++-4.1 gcc gcc-4.1 libc6-dev libssp0 libstdc++6-4.1-dev linux-kernel-headers

make patch perl perl-modules

 Still pending:
 gcc-4.1 libssp0, patch, perl

 That’s all folks

