
Project Genesis Flash hardware How it works Filesystem Details

YAFFS
A NAND flash filesystem

Wookey
wookey@wookware.org

Aleph One Ltd

Balloonboard.org

Toby Churchill Ltd

Embedded Linux Conference - Europe
Linz

Project Genesis Flash hardware How it works Filesystem Details

1 Project Genesis

2 Flash hardware

3 How it works

4 Filesystem Details

Project Genesis Flash hardware How it works Filesystem Details

Project Genesis

TCL needed a reliable FS for NAND
Considered Smartmedia compatibility
Considered JFFS2

Better than FTL
High RAM use
Slow boot times

Project Genesis Flash hardware How it works Filesystem Details

History

Decided to create ’YAFFS’ - Dec 2001
Working on NAND emulator - March 2002
Working on real NAND (Linux) - May 2002
WinCE version - Aug 2002
ucLinux use - Sept 2002
Linux rootfs - Nov 2002
pSOS version - Feb 2003
Shipping commercially - Early 2003
Linux 2.6 supported - Aug 2004
YAFFS2 - Dec 2004
Checkpointing - May 2006

Project Genesis Flash hardware How it works Filesystem Details

Flash primer - NOR vs NAND

Access mode Linear random access Page access
Replaces ROM Mass Storage
Cost Expensive Cheap
Device Density Low (64MB) High (1GB)
Erase block size 8k to 128K typical 32x2K pages
Endurance 100k to 1M erasures 10k to 100k erasures
Erase time 1second 2ms
Programming Byte by Byte, no limit on writes Page programming, must be erased before

re-written
Data sense Program byte to change 1s to 0s. Erase

block to change 0s to 1s
Program page to change 1s to 0s. Erase to
change 0s to 1s

Write Ordering Random access programming Pages must be written sequentially within
block

bad blocks None when delivered, but will wear out so
filesystems should be fault tolerant

Bad blocks expected when delivered. More
will appear with use. Thus fault tolerance is
a necessity.

Project Genesis Flash hardware How it works Filesystem Details

Design approach

OS neutral and developed in user space
Portable - OS interface, guts, hardware interface, app
interface
Log-structured - Tags break down dependence on physical
location
Configurable - chunk size, file limit, OOB layout, features
Single threaded (don’t need separate GC thread like NOR)
Follow hardware characteristics (OOB, no re-writes)
Developed on NAND emulator

Project Genesis Flash hardware How it works Filesystem Details

YAFFS Architecture

Application

POSIX Interface

YAFFS Direct Interface

YAFFS Core
Filesystem

RTOS
Interface

Flash
Interface

RTOS Flash

Project Genesis Flash hardware How it works Filesystem Details

Terminology

Flash-defined
Page - 2k flash page (512 byte YAFFS1)
Block - Erasable set of pages (typically 32)

YAFFS-defined
Chunk - YAFFS tracking unit.
usually==page. Can be bigger

Project Genesis Flash hardware How it works Filesystem Details

Process

Each file has an id - equivalent to inode. id 0 indicates ’deleted’

File data stored in chunks, same size as flash pages (2K/512 bytes)

Chunks numbered 1,2,3,4 etc - 0 is header.

Each flash page is marked with file id and chunk number

These tags are stored in the OOB - 64bits: including file id, chunk number, write serial number, tag ECC
and bytes-in-page-used

On overwriting the relevant chunks are replaced by writing new pages with new data but same tags - the old
page is marked ’discarded’

File headers (mode, uid, length etc) get a page of their own (chunk 0)

Pages also have a 2-bit serial number - incremented on write

Allows crash-recovery when two pages have same tags (because old page has not yet been marked
’discarded’).

Discarded blocks are garbage-collected.

Project Genesis Flash hardware How it works Filesystem Details

Log-structured Filesystem (1)

Imagine Flash chip with 4 pages per block.
First we’ll create a file.

Flash Blocks

Block Chunk ObjId ChunkId Del Comment
0 0 500 0 Live Object header for this file (length 0)

Next we write a few chunks worth of data to the file.

Flash Blocks

Block Chunk ObjId ChunkId Del Comment
0 0 500 0 Live Object header for this file (length 0)

0 1 500 1 Live First chunk of data

0 2 500 2 Live Second chunk of data

0 3 500 3 Live Third chunk of data

Project Genesis Flash hardware How it works Filesystem Details

Log-structured Filesystem (2)

Next we close the file. This writes a new object header for the
file. Notice how the previous object header is deleted.

Flash Blocks

Block Chunk ObjId ChunkId Del Comment
0 0 500 0 Deleted Obsoleted object header (length 0)

0 1 500 1 Live First chunk of data

0 2 500 2 Live Second chunk of data

0 3 500 3 Live Third chunk of data

1 0 500 0 Live New object header (length n)

Project Genesis Flash hardware How it works Filesystem Details

Log-structured Filesystem (3)

Let’s now open the file for read/write, overwrite part of the first
chunk in the file and close the file. The replaced data and
object header chunks become deleted.

Flash Blocks

Block Chunk ObjId ChunkId Del Comment
0 0 500 0 Deleted Obsoleted object header (length 0)

0 1 500 1 Deleted Obsoleted first chunk of data

0 2 500 2 Live Second chunk of data

0 3 500 3 Live Third chunk of data

1 0 500 0 Deleted Obsoleted object header

1 1 500 1 Live New first chunk of file

1 2 500 0 Live New object header

Project Genesis Flash hardware How it works Filesystem Details

Log-structured Filesystem (5)

Now let’s resize the file to zero by opening the file with
O_TRUNC and closing the file. This writes a new object header
with length 0 and the contents are pruned making the data
chunks deleted.
Flash Blocks

Block Chunk ObjId ChunkId Del Comment
0 0 500 0 Deleted Obsoleted object header (length 0)

0 1 500 1 Deleted Obsoleted first chunk of data

0 2 500 2 Deleted Second chunk of data

0 3 500 3 Deleted Third chunk of data

1 0 500 0 Deleted Obsoleted object header

1 1 500 1 Deleted Deleted first chunk of file

1 2 500 0 Deleted Obsoleted object header

1 3 500 0 Live New object header (length 0)

Note all the pages in block 0 are now marked as deleted.
So we can now erase block 0 and re-use the space.

Project Genesis Flash hardware How it works Filesystem Details

Log-structured Filesystem (6)

We will now rename the file.
To do this we write a new object header for the file

Flash Blocks

Block Chunk ObjId ChunkId Del Comment
0 0 Erased

0 1 Erased

0 2 Erased

0 3 Erased

1 0 500 0 Deleted Obsoleted object header

1 1 500 1 Deleted Deleted first chunk of file

1 2 500 0 Deleted Obsoleted object header

1 3 500 0 Deleted Obsoleted object header

2 0 500 0 Live New object header showing new name

Project Genesis Flash hardware How it works Filesystem Details

Filesystem Limits

YAFFS1
218 files (>260,000)
220 max file size (512MB)
1GB max filesystem size

YAFFS2 - All tweakable
2GB max file size
4GB max filesystem size (MTD 32-bit limit)
(16GB tested - limited by RAM footprint (4TB flash needs
1GB RAM))

Devices, hardlinks, softlinks, pipes supported

Project Genesis Flash hardware How it works Filesystem Details

YAFFS2

Specced Dec 2002, working Dec 2004
Designed for new hardware:

>=1k page size
no re-writing
simultaneous page programming
16-bit bus on some parts

Main difference is ‘discarded’ status tracking
ECC done by driver (MTD in Linux case)
Extended Tags (Extra metadata to improve performance)
RAM footprint 25-50% less
faster (write 1-3x, read 1-2x, delete 4-34x, GC 2-7x)

Project Genesis Flash hardware How it works Filesystem Details

YAFFS2 - Discarded status mechanism

zero re-writes means can’t use ‘discarded’ flag
Genuinely log-structured
Instead track block allocation order (with sequence
number)
Delete by making chunks available for GC and move file to
special ‘unlinked’ directory until all chunks in it are ‘stale’
GC gets more complex to keep ‘sense of history’
Scanning runs backwards - reads sequence numbers
chronologically

Project Genesis Flash hardware How it works Filesystem Details

OOB data

YAFFS1:
Derived from Smartmedia, (e.g byte 5 is bad block marker)
16 bytes: 7 tags, 2 status, 6 ECC
YAFFS/Smartmedia or JFFS2 format ECC

YAFFS2:
64 bytes
MTD-determined layout (on linux)
MTD does ECC - 38 bytes free on 2.6.21
Tags normally 28 bytes (16 data, 12ecc)
Sometimes doesn’t fit (eg oneNAND - 20 free)

Project Genesis Flash hardware How it works Filesystem Details

RAM Data Structures

Not fundamental - needed for speed
Yaffs_Object - per file/dir/link/device
T-node tree covering all allocated chunks

As the file grows in size, the levels increase.
The Tnodes are 32 bytes. (16bytes on 2k arrays <=128MB)
Level 0 is 16 2-byte entries giving an index used to search
for the chunkId.
Other level Tnodes are 8 4-byte pointers to other tnodes
Allocated in blocks of 100 (reduced overhead &
fragmentation)

Project Genesis Flash hardware How it works Filesystem Details

testing
Stage CD-ROM NETBOOT Comments

- initrd-preseed Only if /preseed.cfg is present
1 localechooser Language/country/locale selection
1 kbd-chooser Keyboard selection
1 cdrom-detect eth-detect Hardware detection and setup
1 netcfg Network configuration
- file-preseed network-preseed If selected at boot prompt
2 choose-mirror Mirror selection
1 kbd-chooser Keyboard selection
1 cdrom-detect eth-detect Hardware detection and setup
1 netcfg Network configuration
- file-preseed network-preseed If selected at boot prompt
2 choose-mirror Mirror selection
2 load-cdrom (anna) download-installer (anna) Retrieve and unpack additional components
3 eth-detect Hardware detection and setup
3 netcfg Network configuration
3 choose-mirror Mirror selection (sometimes needed for stage 4)

Project Genesis Flash hardware How it works Filesystem Details

Typical patches

-Architecture: alpha amd64 arm hppa i386 ia64 powerpc ppc64 sparc
+Architecture: alpha amd64 arm armeb armel hppa i386 ia64 powerpc ppc64 sparc

- java-gcj-compat-dev [!m68k !mips !mipsel !arm !hurd-i386],
+ java-gcj-compat-dev [!m68k !mips !mipsel !arm !armel !hurd-i386],

-#if defined(__arm) || defined(__arm__) || defined(__arm26__) \
- || defined(__arm32__)
+#if (defined(__arm) || defined(__arm__) || defined(__arm26__) \
+ || defined(__arm32__)) && !defined(__ARM_EABI__) && !defined(__ARMEB__)
#define IEEE_ARM

	Project Genesis
	Flash hardware
	How it works
	Filesystem Details

