
Project Genesis Flash hardware How it works Filesystem Details Embedded Use

YAFFS
A NAND flash filesystem

Wookey
wookey@wookware.org

Aleph One Ltd

Balloonboard.org

Toby Churchill Ltd

Embedded Linux Conference - Europe
Linz



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

1 Project Genesis

2 Flash hardware

3 How it works

4 Filesystem Details

5 Embedded Use



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

Project Genesis

TCL needed a reliable FS for NAND
Considered Smartmedia compatibility
Considered JFFS2

Better than FTL
High RAM use
Slow boot times



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

History

Decided to create ’YAFFS’ - Dec 2001
Working on NAND emulator - March 2002
Working on real NAND (Linux) - May 2002
WinCE version - Aug 2002
ucLinux use - Sept 2002
Linux rootfs - Nov 2002
pSOS version - Feb 2003
Shipping commercially - Early 2003
Linux 2.6 supported - Aug 2004
YAFFS2 - Dec 2004
Checkpointing - May 2006



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

Flash primer - NOR vs NAND

Access mode Linear random access Page access
Replaces ROM Mass Storage
Cost Expensive Cheap
Device Density Low (64MB) High (1GB)
Erase block size 8k to 128K typical 32x2K pages
Endurance 100k to 1M erasures 10k to 100k erasures
Erase time 1second 2ms
Programming Byte by Byte, no limit on writes Page programming, must be

erased before re-writing
Data sense Program byte to change 1s to 0s.

Erase block to change 0s to 1s
Program page to change 1s to 0s.
Erase to change 0s to 1s

Write Ordering Random access programming Pages must be written sequen-
tially within block

Bad blocks None when delivered, but will
wear out so filesystems should be
fault tolerant

Bad blocks expected when deliv-
ered. More will appear with use.
Thus fault tolerance is a necessity.



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

NAND reliabilty

NAND is unreliable - bad blocks, data errors
Affected by temp, storage time, manufacturing, voltage

Program/erase failure
YAFFS internal cache

Detected in hardware. YAFFS copies data and retires block
Charge Leakage - bitrot over time

ECC
Write disturb: (extra bits set to 0 in page/block)

YAFFS2 minimises write disturb (sequential block writes, no
re-writing)

Read disturb, other pages in block energised.
minor effect - needs 10*endurance reads to give errors:
(1 million SLC, 100,000 MLC)
ECC (not sufficient)
count page reads, rewriting block at threshold
Read other pages periodically (e.g. every 256 reads)

MLC makes all this worse - multiple programand read voltages



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

Mechanisms to deal with NAND problems

Chip Degre- Prog/Erase Leakage Write Read
Fault dation failure Disturb Disturb

NAND
self-check

Yes Yes

Block
Retirement

Yes Yes Yes

Wear
Levelling

Yes

Write
Verification

Yes

Read counting
/re-write

Future

Infrequent
Read Checking

Future Future Future

ECC Yes Yes Yes Yes



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

Design approach

OS neutral
Portable - OS interface, guts, hardware interface, app
interface
Log-structured - Tags break down dependence on physical
location
Configurable - chunk size, file limit, OOB layout, features
Single threaded (don’t need separate GC thread like NOR)
Follow hardware characteristics (OOB, no re-writes)
Developed on NAND emulator in userspace
Abstract types allow Unicode or ASCII operation



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

YAFFS Architecture

Application

POSIX Interface

YAFFS Direct Interface

YAFFS Core
Filesystem

RTOS
Interface

Flash
Interface

RTOS Flash



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

Terminology

Flash-defined
Page - 2k flash page (512 byte YAFFS1)
Block - Erasable set of pages (typically 32)

YAFFS-defined
Chunk - YAFFS tracking unit.
usually==page. Can be bigger



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

Process

Each file has an id - equivalent to inode. id 0 indicates ’deleted’

File data stored in chunks, same size as flash pages (2K/512 bytes)

Chunks numbered 1,2,3,4 etc - 0 is header.

Each flash page is marked with file id and chunk number

These tags are stored in the OOB - 64bits: including file id, chunk
number, write serial number, tag ECC and bytes-in-page-used

On overwriting the relevant chunks are replaced by writing new pages
with new data but same tags - the old page is marked ’discarded’

File headers (mode, uid, length etc) get a page of their own (chunk 0)

Pages also have a 2-bit serial number - incremented on write

Allows crash-recovery when two pages have same tags (because old
page has not yet been marked ’discarded’).

Discarded blocks are garbage-collected.



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

Log-structured Filesystem (1)

Imagine flash chip with 4 pages per block.
First we’ll create a file.

Flash Blocks

Block Chunk ObjId ChunkId DelFlag Comment
0 0 500 0 Live Object header for this file (length 0)

Next we write a few chunks worth of data to the file.

Flash Blocks

Block Chunk ObjId ChunkId DelFlag Comment
0 0 500 0 Live Object header for this file (length 0)

0 1 500 1 Live First chunk of data

0 2 500 2 Live Second chunk of data

0 3 500 3 Live Third chunk of data



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

Log-structured Filesystem (2)

Next we close the file. This writes a new object header for the
file. Notice how the previous object header is deleted.

Flash Blocks

Block Chunk ObjId ChunkId DelFlag Comment
0 0 500 0 Del Obsoleted object header (length 0)

0 1 500 1 Live First chunk of data

0 2 500 2 Live Second chunk of data

0 3 500 3 Live Third chunk of data

1 0 500 0 Live New object header (length n)



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

Log-structured Filesystem (3)

Let’s now open the file for read/write, overwrite part of the first
chunk in the file and close the file. The replaced data and
object header chunks become deleted.

Flash Blocks

Block Chunk ObjId ChunkId DelFlag Comment
0 0 500 0 Del Obsoleted object header (length 0)

0 1 500 1 Del Obsoleted first chunk of data

0 2 500 2 Live Second chunk of data

0 3 500 3 Live Third chunk of data

1 0 500 0 Del Obsoleted object header

1 1 500 1 Live New first chunk of file

1 2 500 0 Live New object header



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

Log-structured Filesystem (5)

Now let’s resize the file to zero by opening the file with
O_TRUNC and closing the file. This writes a new object header
with length 0 and marks the data chunks deleted.

Flash Blocks

Block Chunk ObjId ChunkId DelFlag Comment
0 0 500 0 Del Obsoleted object header (length 0)

0 1 500 1 Del Obsoleted first chunk of data

0 2 500 2 Del Second chunk of data

0 3 500 3 Del Third chunk of data

1 0 500 0 Del Obsoleted object header

1 1 500 1 Del Deleted first chunk of file

1 2 500 0 Del Obsoleted object header

1 3 500 0 Live New object header (length 0)

Note all the pages in block 0 are now marked as deleted.
So we can now erase block 0 and re-use the space.



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

Log-structured Filesystem (6)

We will now rename the file.
To do this we write a new object header for the file

Flash Blocks

Block Chunk ObjId ChunkId Del Comment
0 0 Erased

0 1 Erased

0 2 Erased

0 3 Erased

1 0 500 0 Del Obsoleted object header

1 1 500 1 Del Deleted first chunk of file

1 2 500 0 Del Obsoleted object header

1 3 500 0 Del Obsoleted object header

2 0 500 0 Live New object header showing new name



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

Filesystem Limits

YAFFS1
218 files (>260,000)
220 max file size (512MB)
1GB max filesystem size

YAFFS2 - All tweakable
2GB max file size
4GB max filesystem size (MTD 32-bit limit)
(16GB tested - limited by RAM footprint (4TB flash needs
1GB RAM))

Devices, hardlinks, softlinks, pipes supported



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

YAFFS2

Specced Dec 2002, working Dec 2004
Designed for new hardware:

>=1k page size
no re-writing
simultaneous page programming
16-bit bus on some parts

Main difference is ‘discarded’ status tracking
ECC done by driver (MTD in Linux case)
Extended Tags (Extra metadata to improve performance)
RAM footprint 25-50% less
faster (write 1-3x, read 1-2x, delete 4-34x, GC 2-7x)



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

YAFFS2 - Discarded status mechanism

zero re-writes means can’t use ‘discarded’ flag
Genuinely log-structured
Instead track block allocation order (with sequence
number)
Delete by making chunks available for GC and move file to
special ‘unlinked’ directory until all chunks in it are ‘stale’
GC gets more complex to keep ‘sense of history’
Scanning runs backwards - reads sequence numbers
chronologically



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

OOB data

YAFFS1:
Derived from Smartmedia, (e.g byte 5 is bad block marker)
16 bytes: 7 tags, 2 status, 6 ECC
YAFFS/Smartmedia or JFFS2 format ECC

YAFFS2:
64 bytes
MTD-determined layout (on linux)
MTD does ECC - 38 bytes free on 2.6.21
Tags normally 28 bytes (16 data, 12ecc)
Sometimes doesn’t fit (eg oneNAND - 20 free)



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

RAM Data Structures

Not fundamental - needed for speed
Yaffs_Object - per file/dir/link/device
T-node tree covering all allocated chunks

As the file grows in size, the levels increase.
The T-nodes are 32 bytes. (16bytes on 2k arrays <=128MB)
Level 0 is 16 2-byte entries giving an index to chunkId.
Higher level T-nodes are 8 4-byte pointers to other tnodes
Allocated in blocks of 100 (reduced overhead &
fragmentation)



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

RAM usage

Level0-Tnodes:
Chunksize RAM use/MB NAND 256MB NAND

512b 4K 1MB
2k 1K 256K
4k 0.5K 128K

Can change chunk size, and/or parallel chips.
Higher-level Tnodes: 0-Tnodes/8, etc
Objects: 24bytes (+17 with short name caching) per file
For 256MB 2K chunk NAND with 3000 files/dirs/devices

Level 0-Tnodes: 256K
Level 1-Tnodes: 32K
Level 2-Tnodes: 4K
Objects: 120K
412K total



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

Partitioning

Internal - give start and end block
MTD partitioning (partition appears as device)



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

Checkpointing

RAM structures saved on flash at unmount (10 blocks)
Structures re-read, avoiding boot scan
sub-second boots on multi-GB systems
Invalidated by any write
Lazy Loading also reduces mount time.



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

Garbage Collection and Threads

Single threaded - Gross locking, matches NAND
3 blocks reserved for GC
If no deleted blocks, GC dirtiest
Soft Background deletion:

Delete/Resize large files can take up to 0.5s
Incorporated with GC
Spread over several writes

GC is determinsitic - does one block for each write (default)
Worst case - nearly full disk, blocks have n-1 chunks valid
Can give GC own thread, so operates in ‘dead time’



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

Caching

Linux VFS has cache, WinCE and RTOS don’t
YAFFS internal cache

15x speed-up for short writes on WinCE
Allows non-aligned writes
while(program_is_being_stupid)

write(f,buf,1);

Choose generic read/write (VFS) or direct read/write
(MTD)

Generic is cached (usually reads much faster 10x, writes
5% slower)
Direct is more robust on power fail



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

ECC

Needs Error Correction Codes for reliable use
ECC on Tags and data
22bits per 256 bytes, 1-bit correction
CPU/RAM intensive
Lots of options:

Hardware or software
YAFFS or MTD
New MTD, old MTD or YAFFS/Smartmedia positioning

Make sure bootloader, OS and FS generation all match!
Can be disabled - not recommended!



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

OS portability

Linux
Wince (3 and 6)
NetBSD
pSOS
ThreadX
DSP_BIOS
Bootloaders



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

YAFFS in use

Formatting is simpy blanking
mount -t yaffs /dev/mtd0 /
Creating a filesystem image needs to generate OOB data

YAFFS1: mkyaffsimage tool - generates images
YAFFS2: mkyaffs2image - often customised
Use nandutils if possible



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

YAFFS Direct Interface

YDI replaces Linux VFS/WinCE FSD layer
open, close, stat, read, write, rename, mount etc
Caching of unaligned accesses
Port needs 5 OS functions, functions:

Lock and Unlock (mutex)
current time (for time stamping)
Set Error (to return errors)
Init to initialise RTOS context
NAND access (read, write, markbad, queryblock, initnand,
erase).



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

Embedded system use - YAFFS Direct Interface (2)

No CSD - all filenames in full
Case sensitive
No UID/GIDS
Flat 32-bit time
Thread safe - one mutex
Multiple devices - eg /ram /boot /flash



Project Genesis Flash hardware How it works Filesystem Details Embedded Use

Licensing

GPL - Good Thing (TM), patents
Bootloader/headers LGPL to allow incorporation
YAFFS in proprietary OSes (pSOS, ThreadX, VxWorks)

Wider use
Aleph One Licence - MySQL/sleepycat-style:
‘ If you don’t want to play then you can pay’


	Project Genesis
	Flash hardware
	How it works
	Filesystem Details
	Embedded Use

